Submit Manuscript  

Article Details

Impact of Band-Gap Graded Intrinsic Layer on Single-Junction Band-Gap Tailored Solar Cells


Fatima Rasheed J.* and V. Suresh Babu  


Objective: The work investigates the performance of intrinsic layers with and without band-gap tailoring in single-junction amorphous silicon-based photovoltaic cells. The work proposes single-junction amorphous silicon solar cells in which band-gap grading has been done between layers as well as within each layer for the first time.

Materials & Methods: The samples of hydrogenated amorphous silicon-germanium with different mole fractions are fabricated, and their band-gaps are validated through optical characterization and material characterization. A single-junction solar cell with an intrinsic layer made up of hydrogenated amorphous silicon (aSi:H) having a band-gap of 1.6 eV is replaced by continuously graded hydrogenated amorphous silicon-germanium (aSi1-xGe x :H ) intrinsic bottom layers having band-gaps ranging from 0.9 eV to 1.5 eV. The proposed structure has been considered as a variant of previously designed single-junction band-gap tailored structures.

Results: The suitable utilization of band-gap tailoring on the intrinsic absorber layer aids more incident photons in energy conversion and thereby attain a better short circuit current density of 19.89 mA/cm2.

Conclusion: A comparative study on performance parameters of solar cell structures with graded band-gap intrinsic layer and the ungraded single band-gap intrinsic layer has been done. The graded band-gap intrinsic layer structure results in better conversion efficiency of 15.55%, while its ungraded counterpart contributes only 14.76 %. Further, the proposed solar structure is compared with the performance parameters of recent related works. The layers used in the proposed solar structure are of amorphous-phase only, which reduces structural complexity. The use of a lesser number of active layers reduces the number of fabrication steps and manufacturing cost compared to state-of-the-art.


Band-gap tailoring, intrinsic layer, mole fraction, hydrogenated amorphous silicon- germanium, short circuit current density, conversion efficiency


Department of Electronics and Communication, Research Scholar, College of Engineering, Trivandrum, Kerala, Department of Electronics and Communication, Professor, Government Engineering College, Wayanad, Kerala

Full Text Inquiry